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Abstract— We construct a Bayesian risk metric with a method 

that allows for efficient and systematic use of all relevant 
information and provides a rational basis for RHA decisions in 
terms of costs and mission requirements. 

 
Index Terms—radiation effects, reliability estimation, statistics, 

quality assurance, probability.   
 

I. INTRODUCTION 
Because economic and schedule constraints often preclude 

radiation testing with samples large enough for rigorous 
statistical inference, Radiation Hardness Assurance (RHA) 
decisions are often based on a combination of test data with 
simulation results, technical information and expert opinion. 
Efficient combination of all of these types of information is 
particularly important for critical components with marginal 
radiation hardness. In reference 1 we discussed use of archival 
radiation data to supplement data from radiation lot acceptance 
testing (RLAT) and provide a sufficient statistical basis for 
inference.[1] Here we examine whether RHA decisions may be 
amenable to a Bayesian statistical treatment—often the most 
efficient treatment of diverse types of information when 
decisions must be made with limited data.   

In the Bayesian paradigm, one uses archival data, expert 
opinion and all other information available prior to testing to 
construct a Prior probability distribution (or “Prior”) P(A) for 
a hypothesis (A), summarizing our a priori expectations of 
component performance.  We then update this distribution 
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with test data B using Bayes’ Theorem: 
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where P(A|B) (read probability of A given B) is our updated 
distribution given B, P(B|A) is the likelihood of observing B 
given our Prior P(A) and the denominator is a normalizing 
factor representing  the likelihood of observing B whether our 
original hypothesis (A) was correct or not (~A—read “not A”).  
(Reference 2 is a good introduction to Bayesian reasoning.) 

In Bayesian statistics, provided the test data B are consistent 
with hypothesis A, the information in P(A) supplements B, 
yielding greater confidence in inferred performance. 

Elements of a Bayesian treatment have been suggested 
previously.[3]  Moreover, a Bayesian treatment is natural, 
since many aspects of hardness assurance resemble Bruno de 
Finetti’s classic problem on Bayesian probability. (See figure 
1.) In this problem, several urns contain different proportions 
of white and black stones, representing success and failure, 
respectively.[4]  One selects an urn, and only then is the 
probability distribution defined for the problem.  That is, the 
probability distribution itself is a random variable.  This 
example is analogous to RHA situations in which a randomly 
selected flight-lot determines mission success probabilities.  
Similarly, for short-duration missions, the mission radiation 
environment—which determines both degradation and single-
event behavior—can also be viewed as a random variable, 
defined only when one selects a launch date.  

   
P123(S)=0.5 

1 2 3

 
Fig. 1 In Bruno de Finetti’s thought experiment, the probability of drawing a 
black or white stone is not defined until one first selects an urn (or flight lot or 
launch date). The probability distribution itself is a random variable. 

II.  BAYESIAN FORMALISM AND MINIMIZING RISK  

In a typical Bayesian problem we have N independent 
applications of a given part type.  The parts are vulnerable to a 
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failure mechanism induced by some stress x (e.g. TID, LET, 
etc.), and all parts obey the same failure distribution pf(x).  We 
must decide whether to use the parts “as is” or to require 
remediation to increase the probability that the part meets its 
requirements.[5,6]  Two risks are inherent in this decision: 

1) We may decide to fly the part “as is” when its failure 
probability is unacceptably high; or 

2) We may decide the part requires remediation when it 
would have succeeded “as is”. 

Defining risk as the product of an outcome’s probability and 
its cost, Risk 1—the failure risk, Rf — is the product of the 
failure probability Pf and the failure cost Cf.  Recognizing that 
Cf may be time dependent (e.g. an early failure may be more 
costly than a late one), we can express Rf in terms of the failure 
probability density function (pdf) pf as  

∫ ∑
=

×=
mX N
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ifff dxxCxpR
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)()(                           (2) 

In (2), the sum is over the N applications of the part, and pf 
and Cf are functions either of time (x=t, Xm= Tm—the mission 
duration) or the stress (e.g. TID, so that x=dose and Xm = 
mission dose).  Since typically Cf is a function of time and pf is 
a function of the stress, this implies that we have a way of 
treating the time variability of the stress—at least in a “worst-
case” way or for a given confidence level.  We discuss such a 
treatment below.  On the other hand, if Cf is constant, Rf = 
CfPf, where Pf is the cumulative mission failure probability. 

Similarly, Risk2—the over-remediation risk Rr—is realized 
if the part would have succeeded “as is” and we implement 
remediation at cost Cr. Then Rr =PsCr=(1- Pf)Cr.  We adopt the 
strategy that minimizes risk—continuing remediation until 
Rf<Rr. (See figure 2.) To better define the failure probability, 
we may conduct a test at a cost Ct.  However, since a decision 
to test automatically incurs a cost Ct, we should only test if the 
resulting risk reduction is likely to exceed Ct.   

Effective tests must address the main sources of uncertainty 
in the failure probability.  For total ionizing dose (TID) and 
displacement damage (DD), the main uncertainties are usually 
lot-to-lot and part-to-part variability, so TID and DD tests 
usually involve measuring the response of more parts to 
tighten bounds on variability.  Probabilities for single-event 
effects (SEE) scale with SEE rates, and SEE rate uncertainties 
are usually dominated by systematic errors in the SEE rate 
calculation methods and Poisson fluctuations in the observed 
error counts that determine SEE cross sections.  Since the 
systematic errors are inherent, SEE rate/probability 
uncertainties are often best reduced by increasing the counts 
on which SEE cross sections are based.  This is especially true 
for destructive SEE and single-event functional interrupts 
(SEFI), where the disruptive and costly nature of the error 
makes it difficult to accumulate large error counts. 

III. DEFINING COSTS  

The costs of testing, remediation and failure (Ct, Cr , Cf, 
respectively) determine where remediation and testing may 

end.  Thus, successful application of the method depends on 
developing realistic estimates for Cf.  
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Fig. 2 Taking risk as the minimum arising due to failure or unnecessary 
remediation defines a cost scale for the RHA effort. 

  Sometimes, contractual penalties or incentives impose a 
cost structure.  Otherwise, Cf will be based on the functions 
compromised by the failure and by how long the effects of the 
error persist.  Determining a cost for all the potential error or 
failure mode can be simplified by binning the errors/failures 
into severity categories (from trivial to mission critical) and 
basing cost on severity.  In this case, the analysis resembles 
procedures often followed for SEE or reliability analyses (such 
as a FMECA, or Failure Modes, Effects and Criticality 
analysis), except that one assigns a specific cost to each 
error/failure category.[7]  (See figure 3.)  Failures and 
degraded performance are usually permanent, although in 
redundant systems, a failure’s consequences may last only for 
the time needed to replace the failed unit with a redundant one.   
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Fig. 2 Costs of a radiation-induced error or failures depend on what functions 
are lost and for how long.  Failures due to TID or displacement damage are 
usually permanent.   
 

Application, mission or contract requirements also 
determine the time dependence of Cf.  Some failures have the 
same consequences no matter when they occur.  In other cases, 
Cf may decrease with time (more or less linearly) as mission 
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objectives are completed.  For complicated time dependence, 
equation (2) may require numerical integration. 

Finally, it should be noted that failures may have additional 
costs (e.g. insurance premiums, reputation costs, lost future 
business, etc.), and these costs may dwarf those of the actual 
failure.  The framework above is sufficiently flexible to 
account for such costs, provided they can be modeled in a 
realistic way that is acceptable to all parties.  The framework is 
also sufficiently flexible to handle situations where a part is 
being qualified for multiple missions—and even for missions 
that have not yet been planned.  In this case, the sum in 
equation (2) will include applications for all missions covered 
by the qualification and perhaps for likely applications of the 
part based on historical data from past missions. 

IV. RADIATION ENVIRONMENT TIME DEPENDENCE 
The time dependence of the failure cost means that it is 

helpful to understand the temporal variability of the applied 
stress (e.g. TID, DDD or LET), on which the failure 
distribution depends.  Although the time dependence of 
radiation environments is still a nascent field, we can use data 
on past radiation-environment variability to determine a worst-
case profile of stress vs. time consistent with a given 
confidence level.  The standard SEE rate calculation 
methodology serves as a guide, since it yields an average SEE 
rate about which the observed rate fluctuates according to 
Poisson statistics.  This allows us to bound the on-orbit rate to 
any desired confidence level, and the only additional time 
dependence results from the solar cycle.  Since like the mean 
rate, the bound of the rate for any CL is constant in time, the 
failure probability is constant, and the risk will have the same 
time dependence as the failure cost, Cf. 

The time dependence of TID or displacement damage is 
important mainly when a crucial part has marginal radiation 
performance, despite use of all practical mitigation strategies.  
In such cases, when the parts are exposed to radiation (e.g. 
early vs. late) may be as important for the achieving mission 
goals as the magnitude of radiation exposure.   

We used the ESP solar proton model[8] to examine the 
solar-proton dominated environment for the James Webb 
Space Telescope (JWST).  For a desired CL, we constructed a 
worst-case exposure vs. time profile by first generating proton 
fluences for that CL for missions lasting from 1 to 7 solar 
active years.  From these, we generated incremental yearly 
fluences, and constructed our mission dose profile assuming 
the worst fluence occurs during the first year, the second worst 
in the second year and so on out to the 5.5 year mission 
duration.  We fit the resulting profiles in figure 3 to a power 
law in time D=D0ta.  As might be expected, less shielding of 
the application and higher required CL corresponded to greater 
deviation from linearity (a=1) for our worst-case profile. 

For missions shorter than 2 years, individual solar particle 
events (SPEs) may dominate radiation exposure, so we 
constructed simulated missions, with SPE numbers fluctuating 
according to Poisson statistics and event size determined by a 

randomly selected CL for the ESP model.  Generating 10000 
such simulated missions, we determined our 95% WC mission 
profile as that where only 5% of profiles received more dose in 
the first 6 and 12 months of the mission, and subject to the 
constraint that the two-year dose was consistent with the two-
year 95% ESP mission dose.  For this method, dose D ∝  t½, 
largely independent of shielding and CL... 
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Fig. 3 TID levels at the 95% and 99% CL the ESP model for 2.54 and 13 mm 
(~100 and 500 mils) Al equivalent spherical shielding show that year-to-year 
variability is greater for higher CL and thinner equivalent shielding.  

V. PRIOR AND POSTERIOR DISTRIBUTIONS--TID 
The Prior summarizes expectations of radiation behavior 

before performing additional radiation testing. The preferred 
information source for the Prior is archival data for parts 
representative of the flight lot.  We base our Prior on a 
Maximum Likelihood (ML) fit to such data.  Since the 
logarithm of the likelihood ratio is distributed roughly as χ2 
(with degrees of freedom equal to the number of distribution 
fit parameters), we can construct a Prior distribution for the fit 
parameters from the likelihood ratio for each set of fit 
parameters to the ML values.  For example, if µBF and σBF are 
the ML mean and standard deviation for a Normal fit to data, 
and L(µBF,σBF) is the likelihood for these parameters, then the 
probability for any other fit parameters, (µ,σ) will be 

)2)),,(/),(ln(2(5.0),( 2
BFBFLLNP σµσµχσµ ×= (3) 

In (3), we determine the constant N by normalization.  
In Reference 1, we illustrated the use of historical data mined 
from the BSIS data archive to draw conclusions about RHA 
using a particularly large dataset (38 RLAT samples, 158 total 
parts) for Linear Technologies RH1014 quad op amps.  The 
RH1014 exhibits consistent part-to-part and lot-to-lot 
performance.  This consistency and the large amount of data 
available make the part a good candidate for purposes of 
illustration.  Figure 4 shows the Prior for a Normal fit to a 
histogram of increased input bias current (Ibias) in RH1014s 
after 100 krad(Si).  The good statistics produce near agreement 
between the best fit and 95% WC parameters. 

As we add new data, we form the fit-parameter posterior 
distribution by updating the Prior using Bayes’ theorem—
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equation 1.  We estimate the denominator by normalizing the 
Posterior distribution.  If the new data are consistent with the 
Prior, the Posterior is little changed from the Prior.  On the 
other hand, inconsistent data result in a Posterior significantly 
broader and different from the Prior, indicating that our initial 
hypothesis A is incorrect and should be revised and retested. 

    
µµµµ      

            

      σσσσ 3.70 3.85 4.00 4.15 4.30 4.45 4.60 4.75 4.90 5.05
26.35 0.00 0.01 0.02 0.05 0.07 0.07 0.05 0.02 0.01 0.00
26.50 0.00 0.02 0.08 0.15 0.19 0.17 0.11 0.06 0.02 0.01
26.65 0.01 0.07 0.20 0.36 0.43 0.36 0.23 0.11 0.04 0.01
26.80 0.03 0.14 0.41 0.71 0.81 0.66 0.39 0.18 0.07 0.02
26.95 0.05 0.25 0.68 1.15 1.28 1.00 0.58 0.27 0.10 0.03
27.10 0.07 0.35 0.93 1.52 1.66 1.28 0.74 0.33 0.12 0.04
27.25 0.08 0.38 1.02 1.66 1.80 1.38 0.79 0.35 0.13 0.04
27.40 0.07 0.34 0.90 1.48 1.62 1.26 0.72 0.32 0.12 0.04
27.55 0.05 0.24 0.65 1.09 1.22 0.96 0.56 0.26 0.09 0.03
27.70 0.03 0.13 0.38 0.66 0.76 0.62 0.37 0.17 0.07 0.02
27.85 0.01 0.06 0.18 0.32 0.39 0.33 0.21 0.10 0.04 0.01
28.00 0.00 0.02 0.07 0.13 0.17 0.15 0.10 0.05 0.02 0.01
28.15 0.00 0.01 0.02 0.04 0.06 0.06 0.04 0.02 0.01 0.00  

Fig. 4 The best-fit for a Normal Prior of excess Ibias in RH1014 op amps after 
100 krads has µ=27.25, σ=4.3 (shaded cells w/ diagonal stripes).  The 95% 
WC fit is µ=28.15, σ=5.05 (shaded cross-hatched cells). 

In cases where we have lots of historical data, more testing 
may add little precision to the probability distribution.  This is 
often the case for SEE in space qualified parts.  

VI. PRIOR AND POSTERIOR DISTRIBUTIONS--SEE 
The determining parameters for SEE rates are the threshold 

LET LETth, the limiting cross section σlim and the width and 
shape parameters (w and s) for the Weibull fit to the σ vs. LET 
curve.  Usually part-to-part and lot-to-lot variations in these 
parameters are small compared to TID variability and to the 
systematic errors inherent in SEE rate calculations. Thus, we 
are mainly interested in how observed SEE counts affect the 
uncertainties in LETth, σlim and the Weibull fit parameters.   

As for the TID case, we base our Prior on a Likelihood 
ratio—for a Weibull fit to historical data.  However, there are 
subtleties in performing the ML fit. First, the fit is easier if we 
convert the σ vs. LET curve into a differential form—fitting 
differences in σ from one LET to the next to a Weibull pdf.  
Second, we convert each cross section into an event count by 
multiplying by a common fluence, selected so the sum of event 
counts over all effective LETs is the same as the number of 
events observed during the test(s) on which the dataset is 
based.  This ensures the likelihood fit has the appropriate 
sensitivity to additional data.  Figure 5 shows the Prior and the 
resulting best, 95% WC and 99% WC Weibull fits to a SEL σ 
vs. LET curve for the XA1 ASIC, used in the Burst-Alert 
Telescope (BAT) of NASA’s SWIFT gamma-ray burst 
observatory.[9]  Because the BAT uses 128 XA1s to process 
signals from SWIFT’s gamma-ray detectors, over 500 SELs 
were recorded in an effort to minimize statistical errors and to 
find rare destructive SEL modes.  This large dataset produces 
a Prior with small error contours on the fit parameters.  
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Fig. 5 The inset shows the Prior for a Weibull fit to a SEL σ vs. LET curve for 
the XA1 ASIC, along with the best-fit parameters (black cell), and contours 
for the 95% CL (dark gray) and 99% CL (light gray).  In the main figure, due 
to the large dataset, the best-fit (solid line) to the data (x’s), and the 95% 
WC (open boxes) and 99% WC (solid triangles) fits nearly coincide. 
   

If SEE susceptibility is consistent from part to part and lot 
to lot (usually the case for space and military parts), additional 
testing adds little precision to the calculated rate. (In SWIFT’s 
600 km, 22° inclination orbit, the SEL rate would be 1.26×10-4 
SELs per device-day for the best fit, with the 95% WC and 
99% WC rates being 17% and 23% higher, respectively).  In 
such cases parts are commonly qualified based solely on 
historical data.  A Bayesian analysis provides a justification 
for this approach, because the added risk reduction would not 
justify the test cost.  If testing is done, we use the Prior to 
determine how much more testing is needed (see below) and 
then update the Prior with the new data using Bayes’ Theorem. 

VII. APPLICATIONS: TID TESTING DECISIONS 
Many programs seek to save money by waiving RLAT for 

parts with a long and consistent TID performance history.  
While this strategy poses risks (e.g., due to process changes or 
“bad lots”), it can redirect resources where they will most 
benefit the project.  For parts such as the RH1014,  
manufacturer’s guarantees and consistent performance history 
suggest that the risks could be addressed by periodic testing, 
provided designs include sufficient margin. 

  In reference 1, we proposed a method for estimating 
design-to values for critical parameters based on application 
needs and a given acceptable failure probability.  The 
analogous Bayesian treatment emerges somewhat more 
naturally in that an acceptable failure probability need not be 
assigned, but emerges from the requirement that we test only if 
the resultant risk reduction exceeds the test cost Ct.  If Rf<Ct, 
additional testing will not reduce risk.  For constant Cf, Rf will 
be less than Ct if the cumulative failure probability Pf<Ct/Cf.  
For a hypothetical application assuming a 99% CL, 7 year ESP 
environment transported through 1.3 mm Al equivalent 
shielding, the mission TID is 215 krad(Si) and the 99% worst-
case dose vs. time profile follows a power law with D∝ t2/3.  If 
Cf=$1000000 and Ct=$10000, then we meet our criterion for 
waiving RLAT when Pf≤1% integrated over the mission 
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duration (see figure 6).  The design-to leakage current, Id, is 
the value for which P(Ibias>Id)<1%--in this case 95 nA.  For 
the RH1014 and many other parts, Id and µ increase roughly 
linearly with dose from 0-200 krad(Si).  Multiplying the ratio 
Id/µ=1.66 by the usual 2x radiation design margin (RDM), the 
RDM for 95/99 assurance is roughly 3.3×. 
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Fig. 6 The 95% CL worst-case Ibias pdf for RH 1014s exposed to a 99% CL 
ESP environment behind 1.3 mm Al shifts upward and broadens during 7 
years of Solar Max.  Setting the design-to Ibias (Id) to 95 nA, P(Ibias>Id) 
(shaded rectangle) is less than 1%.  This defines the 95/99 CL Id.  
 

If Cf is time dependent (e.g. decreasing linearly with time) 
the calculation is more complicated, but the criterion (Rf<Ct) is 
the same.  Again for Cf(t=0)=$1000000 and Ct=$10000, figure 
7 illustrates that introducing the time dependence of Cf reduces 
Id to 84 nA and the required RDM to 2.95x. 

Regardless of the time dependence of Cf, the large dataset 
and reasonable radiation response of the RH1014 allow us to 
substitute moderate RDMs for RLAT.  While no historical 
data can protect against adverse process changes, this 
approach can at least justify substituting periodic testing for 
RLAT in some cases.  Smaller datasets require larger RDMs. 
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Fig. 7 At the design-to Ibias, Id, integrated failure risk Rf equals the test cost 
Ct, so more testing does not reduce risk.  A failure cost that decreases linearly 
with time lowers Id by about 12% compared to a constant failure cost. 

VIII. APPLICATIONS: SEE TESTING DECISIONS 
As alluded to above, if we have high confidence that flight 

parts will behave like those on which the Prior is based, it may 
be possible to qualify a part based on the Prior alone.  Since 
the SEE probability density is constant, any time dependence 
in equation 2 arises from the failure cost, Cf.  For constant Cf, 
the risk is Cf multiplied by the expected number of SEE during 
the mission.  For linearly decreasing Cf, we would multiply the 
mission SEE count by the average Cf (half the initial value).  
For the example of the XA1 ASICs discussed above, we 
expect fewer than 12 SELs (95% CL) during SWIFT’s 2 year 
mission.  Since the mission could suffer 10% attrition and still 
fulfill its requirements, and since fewer than 3% of the SELs 
during testing resulted in device failure even at the highest test 
LET, we concluded that the SEL susceptibility does not pose a 
serious threat to mission requirements.  The consequences of 
nondestructive SELs were mitigated with SEL detection and 
recovery circuitry.  

Now, we investigate the use of the Prior to determine 
whether additional testing is warranted.  Let us suppose that 
instead of the 500 SELs in our XA1 dataset, our Prior is 
instead based on 50 observed SELs, plus 2 destructive SELs 
observed in a special test at high LET (see Table I).  
 

TABLE I: SEL DATASET FOR XA1 SEL PRIOR 

LET 
(MeVcm2/mg)

# SEL (test 
current limited)

σsel Total 

(cm2)
Destructive 

SEL σdest (cm2)
6.8 2 4.3E-07 N/A N/A
11.4 8 0.000228 N/A N/A
18.7 12 0.0019 N/A N/A
26.2 N/A N/A 0 <0.0000002
37.4 13 0.00237 N/A N/A
59.9 N/A N/A 2 0.0000012
74.8 15 0.00438 N/A N/A  

The lower amount of data results in larger error bars on the 
fit parameters and the resulting rates. (See figure 8.) Also, 
assume the XA1 is being considered for a two-year mission in 
geostationary orbit (GEO)—for which SEL rates are roughly 
45 times those for the SWIFT orbit.  We wish to address both 
destructive SEL and the impact of nondestructive SELs.   

With regard to destructive events, we want to ensure that we 
have 128 ASICs operational at end of life. While the ASICs 
will have overcurrent detection and recovery circuitry, we 
cannot be certain that this circuitry will protect them against all 
destructive events.  We therefore seek to meet our goals by 
adding redundant ASICs.  Specifically, we want to know how 
many cold spare XA1s we must fly to have 95% confidence of 
at least 99% probability that at least 128 ASICs will be 
operational at the end of the 2 year mission.  Because the finite 
supply of ASICs precludes gathering more destructive SEL 
data, we calculate a bounding rate using a figure of merit 
(FOM) approach—R≈400σdest/LETth

2.  Taking the 95% CL 
bounding cross section (assuming Poisson fluctuations)—
3.7×10-6 cm2, and LETth= 26 MeVcm2/mg yields a 95% CL 
rate of 2.3×10-6 SELs per device-day, or an expected mission 
total of 0.2.destructive SELs.  Since a Poisson distribution 
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with this mean has less than 1% probability of more than 2 
SELs, 2 cold spares provide the required level of assurance.   

 

w     
s

0.93 1.13 1.33 1.53 1.73 1.93
18.0 0.00 0.00 0.00 0.00 0.00 0.00
20.0 0.00 0.01 0.00 0.00 0.00 0.00
22.0 0.01 0.04 0.03 0.00 0.00 0.00
24.0 0.01 0.09 0.12 0.03 0.00 0.00
26.0 0.01 0.13 0.24 0.09 0.01 0.00
28.0 0.01 0.13 0.29 0.14 0.02 0.00
30.0 0.00 0.09 0.24 0.14 0.03 0.00
32.0 0.00 0.06 0.15 0.09 0.02 0.00
34.0 0.00 0.03 0.07 0.04 0.01 0.00
36.0 0.00 0.01 0.03 0.02 0.00 0.00
38.0 0.00 0.01 0.01 0.01 0.00 0.00
40.0 0.00 0.00 0.00 0.00 0.00 0.00
42.0 0.00 0.00 0.00 0.00 0.00 0.00  

Fig. 8 Diminishing the dataset on which the Prior in figure 5 is based by 10x 
(for a constant  σ vs. LET curve constant, but decreased fluences) broadens 
the 95% and 99% confidence contours (dark and light grey, respectively), 
while the best-fit parameters (black square) stay the same. 
 

The possibility of destructive SEL complicates the recovery 
process for nondestructive events, since the affected device 
must be verified functional before full operations are 
recovered.  The loss of availability during this time incurs a 
cost of $300.   Using the Prior (figure 8), the expected mission 
total of SELs for the best-fit Weibull (w=28, s=1.33) is 531, 
while the 95% WC fit (w=21, s=1) expected total is 832.  
Thus, the 95% WC risk is $249600.  This is clearly larger than 
the likely cost of a subsequent SEL test, leading to the 
question of whether such a test is likely to reduce risk 
sufficiently to justify its cost.  As mentioned above, if the test 
results support the Prior, the posterior will be narrower than 
the Prior and have roughly the same best-fit.  In this case, the 
95% WC risk will approach the best-fit value as data are 
added.  To simulate this process, we repeatedly add data 
consistent with the dataset underlying the Prior and observe 
the process of convergence.  However, since data is not a free 
commodity, we assume that every SEL added to the dataset 
costs an average of $100 (in test preparation, beam time, etc.), 
on top of a minimum test cost of $2000.  While more 
sophisticated analyses are possible, this procedure is adequate 
for test planning.  With these assumptions, we determine the 
optimum test in terms of data added.  As figure 11 shows, 
increasing the dataset to 229 SELs over the 50 for the Prior at 
a cost of $19900 reduces risk by $56779, for a net risk 
reduction of $36879.  While the data accumulated would likely 
vary somewhat from the data underlying the Prior, the 
symmetry of the Prior indicates that the chances the new data 
will be worse than expected are roughly equal to the chances 
that it will be better.  Thus, our analysis establishes a good 
probability that additional testing would reduce risk and that a 
level of effort approaching $20000 is appropriate.    Moreover, 

the analysis can be updated in real time during testing, and the 
testing strategy can be optimized accordingly.   
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Fig. 11 As we add data, the excess 95% WC risk over that for the best-fit to 
the data approaches 0—roughly according to a power law (main figure).  
Since testing is costly, there is an optimum test effort (inset) that minimizes 
the combined risk + test cost—here adding 179 SELs at a cost of $19900. 

IX. PRIORS WITH LIMITED DATA 
Bayesian methods allow us to develop Priors using expert 

opinion, modeling, etc. to supplement, or even replace, data. 
We validate our assumptions by updating the Prior with test 
data. Regardless of its underlying source, the Prior should 
reflect our model’s uncertainty, and tests should distinguish 
between our model and any alternatives (A and ~A in Bayes’ 
Theorem). If P(B|A) > P(B|~A), the posterior P(A|B) will more 
clearly favor hypothesis A. If B conflicts with A, the posterior 
becomes more diffuse, suggesting our model is incorrect and 
needs more testing.   

When data are scarce, the Prior is useful for test planning 
and resource allocation. To illustrate, we consider the TID 
response of CD4000 family parts baselined for control units 
for JWST optics. These parts must operate at 25 Kelvin for 5.5 
years in the L2 radiation environment (22 krad(Si) @ 95% CL 
by EOL).  Although CD4000s perform well to >100 krad(Si) 
at ambient temperatures, similar performance at 25 K is 
questionable, given the suppression of interface state 
formation and annealing at cryogenic temperatures. 

In testing to date, the CD4051 mux and CD4066 switch 
revealed considerable variability, with all 5 CD4051s failing 
parametrically between 10 and 20 krad(Si), one CD4066 
failing at 30 krad(Si), another at 70 krad(Si) and the other 3 
still functional when testing was suspended at 75 krad(Si).   

 These results raised concerns for the hardness of the 
CD40109 level shifter—still to be tested. Failure to qualify 
this part would result in redesign with a significant mass 
penalty. We define failure as leakage current exceeding 
specifications and assume Cf decreases linearly in time: 
Cf=$1E7×(1-t/5.5). Ct for a cryogenic TID test is on the order 
of $15000-$20000. Constructing a Prior for the CD4066 from 
the previous cryogenic TID data is straightforward, although 
the broad Prior makes a Normal approximation unphysical.  
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Table II shows TID as a function of time (1st 2 columns--95% 
WC dose vs. time profile), the failure cost, Pf for the Prior (3rd 
column--90% CL) and Pf with 5 and 8 more parts failing above 
75 krad(Si) (last 2 columns—90% CL).  Other guidelines from 
studying the Prior and its response to new data sets are: 

1) Limiting the failure distribution breadth (given the 30 
krad(Si) failure) requires testing the next lot to failure.  
2) 5 parts are adequate to attain 90/99 statistics for a 
Weibull distribution; 8 are needed if the distribution looks 
lognormal.  Rf for the cost and failure probability profiles in 
columns 3 and 5 is $9800, so more testing above the 5-8 
additional parts would not be justified.   
 

TABLE II: CD4066 90% CL CUMULATIVE WEIBULL PF  
Mission 
Year

TID 
krad(Si) Failure Cost

P(Fail)-
Prior

P(Fail)-Prior + 5 
parts >75 krad(Si)

P(Fail)-Prior + 8 
parts >75 krad(Si)

1 6.14 8.18E+06 0.016 0.00007 0
2 10.7 5.21E+06 0.095 0.0005 0.00001
3 14.6 2.37E+06 0.125 0.0017 0.00005
4 17.7 6.45E+05 0.145 0.0035 0.00015
5 20.7 5.87E+04 0.166 0.006 0.0004

5.5 22 0.00E+00 0.175 0.008 0.0005  
 

The different results for the CD4066 and CD4051 
complicate generation of a Prior for the CD40109.  Based on 
cryogenic performance data and expert opinion, we construct 
the Prior weighting results for the CD4066 by 90% and the 
CD4051 by 10%. We give CD4000 family parts half the 
weight for CD40109 data.  The resulting Prior in figure 10 
shows that broad failure distributions with high mean hardness 
are as probable as narrow distributions peaked 70-90 krad(Si).  
Again, testing to failure is important to narrow the distribution. 

Table III gives the CD40109 Pf in a format similar Table I.  
Adding data (5 parts w/ failure >75 krad(Si)), narrows the 
distribution in both Weibull width, W, and shape, S. (See Fig. 
11.)  Again, 5 parts with failure levels >75 krad(Si) are 
adequate to establish 90/99 statistics if the failure distribution 
resembles a Weibull, while 8 parts are needed if the 
distribution looks more lognormal.  For this distribution, Rf 
=13000, again obviating the need for further testing if the Pf in 
column 5 is achieved or exceeded. 
 
W     S 0.20 0.95 1.70 2.45 3.20 3.95 4.70 5.45 6.20 6.95

25 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
37 0.03 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
49 0.03 0.10 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00
61 0.03 0.15 0.15 0.10 0.06 0.03 0.01 0.00 0.00 0.00
73 0.03 0.18 0.22 0.19 0.13 0.09 0.06 0.03 0.02 0.01
85 0.04 0.20 0.26 0.22 0.16 0.11 0.07 0.04 0.02 0.01
97 0.04 0.22 0.27 0.22 0.15 0.09 0.05 0.02 0.01 0.01

109 0.04 0.23 0.26 0.20 0.12 0.06 0.03 0.01 0.01 0.00
121 0.04 0.23 0.25 0.17 0.09 0.04 0.02 0.01 0.00 0.00
133 0.04 0.23 0.23 0.14 0.07 0.03 0.01 0.00 0.00 0.00
145 0.04 0.23 0.22 0.12 0.05 0.02 0.01 0.00 0.00 0.00
157 0.04 0.23 0.20 0.10 0.04 0.01 0.00 0.00 0.00 0.00
169 0.04 0.23 0.18 0.08 0.03 0.01 0.00 0.00 0.00 0.00
181 0.04 0.22 0.16 0.07 0.02 0.01 0.00 0.00 0.00 0.00  

Fig. 10 Generic CD4000 family Prior Weibull distribution, weighted 90% on 
theCD4066 and 10% on the CD4051. 

 
TABLE III: CD40109 90% CL CUMULATIVE WEIBULL PF 

Mission 
Year

TID 
krad(Si) Failure Cost

P(Fail)-
Prior

P(Fail)-Prior + 5 
parts >75 krad(Si)

P(Fail)-Prior + 8 
parts >75 krad(Si)

1 6.14 8.18E+06 0.115 0.0001 0
2 10.7 5.21E+06 0.175 0.0007 0.000007
3 14.6 2.37E+06 0.22 0.0022 0.00005
4 17.7 6.45E+05 0.25 0.0045 0.00015
5 20.7 5.87E+04 0.275 0.008 0.0004

5.5 22 0.00E+00 0.28 0.01 0.0006  
 
W     S 2.45 3.20 3.95 4.70 5.45 6.20 6.95 7.70 8.45 9.20 9.95 10.70

65 0.01 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
67.5 0.01 0.03 0.05 0.05 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00

70 0.02 0.04 0.08 0.10 0.11 0.11 0.09 0.07 0.05 0.04 0.02 0.01
72.5 0.02 0.05 0.10 0.15 0.18 0.20 0.20 0.19 0.16 0.13 0.10 0.08

75 0.02 0.06 0.11 0.17 0.22 0.25 0.26 0.25 0.23 0.20 0.17 0.13
77.5 0.02 0.06 0.11 0.17 0.21 0.24 0.24 0.22 0.19 0.16 0.13 0.10

80 0.02 0.06 0.10 0.15 0.18 0.18 0.17 0.14 0.11 0.09 0.06 0.04
82.5 0.02 0.05 0.09 0.12 0.13 0.12 0.10 0.08 0.05 0.04 0.02 0.01

85 0.02 0.05 0.07 0.08 0.08 0.07 0.05 0.03 0.02 0.01 0.01 0.00
87.5 0.02 0.04 0.05 0.06 0.05 0.04 0.02 0.01 0.01 0.00 0.00 0.00

90 0.02 0.03 0.04 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00
92.5 0.01 0.02 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

95 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
97.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

Fig 11 CD40109 Posterior Weibull distribution, assuming the Prior from 
figure 10 and 5 parts failing at levels >75 krad(Si). 

X. CONCLUSION 
The above analyses have provided a cursory introduction to 

the broad applicability of Bayesian analysis to RHA issues—
both for SEE and degradation phenomena such as TID (as well 
as displacement damage).  Bayesian risk serves as both a 
metric for allocating resources, judging RHA efficacy and 
comparing risks and as a rigorous and efficient way of using 
diverse information.  However, Bayesian methods while 
rigorous, do not banish subjectivity.  Subjectivity arises both 
in defining the Prior—e.g. the information to include, the 
weights for different data, the models assumed—and in 
defining failure costs.  In our analyses, we have taken a 
conservative approach to both of these aspects of the analysis.  
Priors were defined in terms of archival data representative of 
the flight lot—or in the case of the CD40109, in terms of 
closely related parts from the same radiation hardened logic 
family.  Failure costs were defined in terms of either 
contractual incentives or penalties or in terms of functions 
compromised by the error, degradation or failure.  Since all 
subsequent probabilities are conditional on the Prior, and since 
the failure, test and remediation costs determine the scale of 
the RHA effort, conservative but realistic treatments of these 
issues are more likely to lead to conclusions that are bounding 
but not punitive. By making subjectivity explicit in the 
analysis, we can validate it and correct it as needed—an 
iterative process that reflects the ongoing nature of RHA.  

We have also introduced significant flexibility in terms of a 
method for bounding at a given CL the temporal variations in 
the radiation environment. This allows us to introduce time-
dependent failure costs and risks.  This strategy allows us to 
achieve greater fidelity to the actual risks faced by the mission.  
In addition to the examples outlined above, we can foresee 
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several other applications of Bayesian methods.  The 
possibility in Bayesian analysis to construct a Prior based on 
information other than test data provides opportunities to 
introduce Priors based on modeling and simulations. One 
particular area of interest is the analysis of relatively rare, but 
high impact failure/error modes such as severe ELDRS 
response and extremely long transients in analog devices.[10]   

We also note that Bayesian methods should also prove 
fruitful in analysis of other spacecraft threats—from reliability 
to mechanical failure to spacecraft charging.  This prospect 
raises the possibility that the risks posed by these threats might 
be evaluated and compared—as long as all of the analyses 
were conducted consistent assumptions and comparable 
conservatism. 

It is also appropriate to consider what the methods outlined 
here cannot do.  The sources of information underlying the 
Prior—historical data, expert opinion etc.—are unlikely to 
account for unexpected threats (e.g. process changes, 
counterfeit parts, and so on).  Also, the flexibility and power of 
Bayesian methods entails some risks—whether they arise from 
deliberate abuse or merely from inconsistent assumptions 
within or between analyses.  Bayesian methods are most likely 
to find application where there is either significant amounts of 
information other than lot-specific test data or where test data 
by itself is unlikely to answer all questions about a part’s 
suitability for its application.  The techniques outlined here are 
complementary to conventional RHA methods,[11]  rather 
than a replacement for them. 

Finally, we have taken a Bayesian approach in the current 
work because we feel that such an approach provides a more 
natural framework for the techniques presented here.  
However, we note that much of the work we have discussed 
can also be interpreted in terms of the more common 
frequentist approach to statistical analysis. 
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